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I

SUMMIL"Y

This is a progress report on research carried out under the

sponsorship of the Air Force Office of Scientific Research under

Grant #AF-AFOSR-71-2078D for the period June 1, 1975 to May 31, 1976.

The research accomplished during this period, as well as con-

tinuing research, is outlined in Section II. Section III gives the

appropriate references, whereas publications resulting from this

grant during the reporting period are given in Section IV. Publica-

tions by other members of the Center which relate to this research

are given in Section V.

The research carried out during this period can be divided

into six interrelated areas which arise in the study of control

systems.

1) Linear Multivariable Systems

2) Adaptive Control Systems

3) Bilinear Systems

4) Stochastic Systems

5) Systems that give rise to Bifurcations

6) Systems governed by Ordinary and Functional Differential

Equations.

These research accomplishments are briefly outlined below;

Section II gives a fuller description of these results.

Professor Wolovich and his students have studied the problem

of arbitrarily assigning closed loop poles of a linear multivariable
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systems developing a new method, a generalization of the classical

toot locus method. Studies have also been conducted of the attain-

ment of stable solutions of model matching problems. Wolovich has

recently published a survey of recent contributions made utilizinq

the differential operator approach, in contrast to the state-space

approach, in the analysis and synthesis of linear multivariable

systems.

Professor Pearson and his students have developed a technique,

based on a modified minimum energy regulator problem, to obtain feed-

back stabiiization of linear time varying differential systems.

Professor Pearson has also developed two methods of parameter identi-

fication for linear differential systems.

Using a development in system identification, Pearson has

developed identification techniques applicable to a class of parameter

adaptive control systems. He has, with a student, studied bilinear

control systems with particular applications to parachute gliding

systems and the pursuit-evasion missile control problem.

Professors Falb and Wolovich have pursued studies of linear

operator feedback for the compensation and control of multivariable

systems.

Professor Kushner has developed a number of computational

methods and techniques for control problems with diffusion models;

these results are presented in a forthcoming monograph. He has also

continued his study of the application of Monte Carlo methods for the

optimization of constrained noisy systems.

Professor Fleming has recently coauthored a book on determinis-
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tic and stochastic optimal control (1; he has also studied the

concept of generalized solutions for optimal stochastic control

problems.

The study of bifurcation problems has been pursued by Pro-

fessor Hale and his students, both from the abstract viewpoint and

for specific applications, such as the von Kirmin equations for

plates and the Duffing equation for nonlinear oscillations.

Professors Banks, Hale and LaSalle have continued their

studies of systems described by ordinary and functional differential

equations. Professor Hale and students have studied the stability

invariance of functional differential equations with respect to

changes in the delays. Professor Banks has studied the problem of

developing approximation techniques for linear, bili-4ear and weakly-

nonlinear systems with delays, Professor LaSalle has pursued studiee

of vector liapunov functions and of systems of pure difference

equations.
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II

RESEARCH ACCOMPLISHMENTS AND CONTINUING RESEARCH

1. Linear Multivariable Systems

a. Analysis and Synthesis of Linear Multivariable Systems

Professor Wolovich and Mr. Panos Antsaklis, one of his grad-

uate students, have been working on the problem of arbitrarily as-

signing the closed loop poles of a linear multivariable system

through the employment of constant gain output feedback. This pro-

blem, which is graphically resolved in the scalar case via the

classical root locus, remains one of the most important unresolved

problems in linear systems theory. Nevertheless, they have succeeded

in identifying a real matrix R whose rank represents a bound on

the maximum number of closed loop poles which can be arbitrarily as-

signed via constant gain output feedback [2]. Furthermore, examples

have been obtained which illustrate that the bound cannot always be

attained, and further investigations are planned in order to gain

additional insight with respect to this question as well as to develop

computational procedures for attaining "as much arbitrary pole place-

ment as possible".

As a result of their investigations, a new method has been

found [3) for assigning min(nm+p-1) closed loop poles using linear

output feedback. Here n is the system order and m and p the

number of inputs and outputs respectively. More specifically, para-

metric expressions of the desired feedback gain matrix H are de-

rived which not only allow the direct assignment of min(n,m+p-1)
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ii closed loop poles, but also make possible the "control" of the

remaining unassignable poles. Finally, as a consequence of the

above, an interesting generalization of a well known scalar result

i& presented which constitutes a direct method of assigning min(m,p)

cloaed loop poles.

A partial resolution of the question of stability of solu-

tions to the minimal design problem has also been obtained in terms

of transfer matrix factorizations employing the new notions of

"common system poles" and "common system zeros" as well as the "fixed

poles" of all solutions and those of minimal solutions (4]. It

should be noted that the minimal design problem is directly related

to the question of designing compensators of lowest possible dynamic

order to achieve well-defined closed loop performance. The results

obtained are employed to more directly resolve questions involving

the attainment of stable solutions to the model matching problem as

well as stable minimal order state observers.

Finally, Professor Wolovich has published a rather inclusive

report [5] which outlines some of the major recent contributions made

utilizing the differential operator approach, rather than the state-

space approach, for the analysis and synthesis of linear multivariable

systems. It might be noted that a differential operator description

of the dynamical behavior of a physical system often follows as a

direct result of employing well known physical laws to describe the

performance of the system, and techniques which directly utilize this

description are often more efficient than those which require the

development and employment of equivalent state-space models.
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b. Feedback Stabilization of Linear Systems

New results have been obtained in the feedback stabiliza-

tion of a linear tima-varying differential system [6] by Pearson and

Kwon. The technique arises from a modified minimum energy regulator

problem subject to a terminal constraint on the state. Minimum energy

control problems subject to a terminal constraint on the state have

been discussed in the literature -or various missile control problems

and inevitably lead to a singuler control law in which the feedback

gains are unbounded near the terminal time. Here it is shown that

a certain modification of the control law, which avoids the singular

property, leads to an asymptotically stable control system. Even

when specialized to the time invariant case, the control law leads

to an extension of some well-known methods for stabilizing time in-

variant systems via the inverse of the controllability Gramian matrix.

Regarding the latter method for stabilizing discrete time systems,

some extensions were obtained this past year which removed the assump-

tion of nonsingularness of the system matrix [7].

c. System Identification

Research in this area by Pearson during the past year has

resulted in two methods of parameter identification for linear dif-

ferential systems which circumvent the need for estimating the system

initial conditions when identification utilizes only input-output

data observed over a finite time interval 0 < t < t of arbitrary

duratior. In both methods, unknown disturbances are modeled deter-

ministically by uncontrollable modes and the frequencies present in

the disturbances, but not the initial conditions exciting such modes,
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must be identified along with the system parameters. In the first

method, the disturbances are repzesented implicitly and the fre-

quencies associated with the disturbances must be extracted by a

qpolynomial factorization of the identified transfer function matrix,

leaving a reduced order model which represents the controllable por-

tion of the system. A short paper describing this method appeared

in (8] and a full-length version, including computer s-imulation data,

will appear in [9]. In the second method, the disturbances are

modeled explicitly and the identification procedure involves determin-

ing the system and disturbance parameters simultaneously based on in-

put-cutput data on the time interval 0 < t < tI. Th. second method,*

which has been reported in [10], is more general than the first in that

the system parameters are allowed to enter nonlinearly into the basic

model. The helicopter example in Section 3 of [10] illustrates the

importance of this property in that even though the unknown parameters

may enter linearly in the state equations, they will nevertheless

generally enter nonlinearly when the input-output differential equa-

tion is derived. Disturbance parameters always enter nonlinearly with

the system parameters in this method due to the manner by which they

are modeled, i.e., as uncontrollable modes. Computationally, the

first method involves solving linear algebraic (normal) equations for

the unknown parameters, followed by a polynomial factorization rou.tine,

while the second method 1eads to scalar valued nonlinear algebraic

equations. Computer simulations have not yet been carried out for

the .d:ond method, but are in the planning stage.
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d. Linear Output Feedback Compensation

In order to represent the dynamical behavior of the

class of system considered, Falb and Wolovich find it convenient

to employ a (general) differential operator representation [11] of

the form:

P(D)z(t) = Q(D)u(t); y(t) - R(D)z(t) + W(D)u(t), ()

where z(t) is a q-vector called the partial state, u(t) is an

m-vector called the input, y(t) is a p-vector called the output,

and P(D), Q(D), R(D) ;.nd W(D) are polynomial matrices of the

appropriate dimensions in the differential operator D = d/dt with

P(D) q x q and nonsingulaL. In certain instances, it will be more

useful and illuminating to employ certain specialized forms of (1);

i.e., either a controllable differential operator representation

((11] ),

PR(D)z(t) = u(t); y(t) = R(D)z(t), (1c)

or an observable differential operator representation ((11]),

PQ(D)z(t) = Q(D)u(t); y(t) = z(t). (1o)

It should perhaps be noted that the differential operator repre-

sentation represents an alternative to (actually a generalization

of) a more conventional state-space representation of the form:

x(t) = Ax(t) + Bu(t); y(t) = Cx(t) + EU(t), (2)

where x(t) is an n-vector called the state and A,B,C, and E

are real matrices of the appropriate dimensions. In particular,
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we note that (2) represents a special form of (1) with

iDI-A,B,C,D} = {P(D),Q(D),R(D),W(D)}.

In view of either representation, linear output feedback (lof)

is defined by the iontrol law:

u(t) = + v(t) (3)

where H = [1hij ] is an m x p real gain matrix and v(t) is an

m-dimensional external input. It might be noted that since dynamical

elements are not present in (3), lof represents a most practical

form of compensation which is frequently employed in the scalar

(single input/output) case. The classical root locus, of course,

graphically depicts the variation of the poles of a scalar system

under lof compensation as a single gain varies over prescribed

limits. The implementation simplicity of lof does not, however,

imply a corresponding simplicity of analysis in the multivariable

case as is well known and documented, due to the nonlinearities

introduced by the cross-coupling terms. Nonetheless, numerous

investigations ([12], [13], [li], [15], [16]) have been undertaken

in order to provide new insight regarding this very practical form

of feedback compensation. The most recent anA illuminating of

these ([13], [14], [15]) have noted that it is "almost always"

possible to arbitrarily assign min(n,m+p-l) closed loop poles

via lof. Earlier examples, however, have been given which show

that m + p - 1 is not generally an upper bound, and very recent

studies ([17] have established a new, more illuminating bound on

the maximum number of poles which can be arbitrarily assigned via
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411i Jov bc delndated-. I
in particular, if attention is restricts4-to the case of, I

,strictly proper systems, i e., when E, = 0 in (2) or, equivalently,

when the system transfer matrix:

T(s) -. C(sI-AY1 B - R(s)P- (s)Q(s) + W:(s) - R(s)P" (s)= P'i (s)Q(S) , (4)

as derived from, (S), (1), (ic), and (1o), respectively, is. strictly

proper, it follows that the zeros of

Aai 03) ]s-I!-A+BHC,Il JP JHRs I P()QsH 5

represent the poles of a (state-space or differential operator)

system compensated by lof. The dependency of the zerct of As(S)

on the (pm) gain elements, hj, of H represents the main focus

of this part of the proposal, and a variety'of questions'related to

lof compensation are proposed for investigation, e.g.

(i) How many zeros of AH(s) can be arbitrarily assigned

via H?

(ii) Can a system be stabilized via lof?

(iii) What is the minimum oxder of a dynamic compensator

required to insure complete and arbitrary pole placement?

(iv) What gain matrix, H, or set of matrices assigns

certain zeros of AH(s)?

It should be noted that if, as in most earlier investigations,

one were to employ a state-space formulation in order to study the

variation of the zeros of IsI-A+BHCI as a function of the hij,
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then such an investigation would involve the manipulation of-more

parameters, namely all of the n(n+m+p) entries of A,B, and C,

than necessary. A differential operator representation of the form

(1c) in comparison, completely describes the dynamical behavior of

2
an equivalent system with no more than n(m+p) + m independent

terms, a computational savings of at least n2 -m terms. The

computational efficiency associated with the differential operator

approach manifests itself in many aspects of linear system analysis

and synthesis, an observation which will be more thoroughly illus-

trated in our subsequent discussions.

Let us now be specific regarding the progress made thus far

regarding our differential operator investigation of lof compensation

and proposed extens',ns. To begin, " note that in view of (5),

R (sAl)= j[H I] [PR(S)]'

or, in view of the Binet-Cauchy formula ([18]), AH(s) can be ex-

pressed via the relation:

AH1(S) = ( [H I] 2 LR(s] [ 1 j2R ] ( 7 )

l<Jl J2 <..ej <mp Jl j2 .. J R( 2 . .

where-the notation G i . m: ' denotes thez;appropriate mth orderwher thenottionG Jl j2 "'' 3ml

minor of G. In other words, in view of (7), A (S) IPR(s)+HR(s)I

can be expressed as the sum of g Imi = mpp products of the
:1+ the
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mth odrt
m order minors of [H I] and the appropriate m h order minors of

* LR (]( " This, 'in turn, implies that A (s) '- A(s), where

A(S) - I l IsI-Ai, can be expressed as the inner product

(S)- A(s) I] , (8)

where MI represents "a g-l dimensional row vector consisting of

individual and product elements of the hij, and MRp represents a

corresponding colunri vector consisting of all of the g mth order

minors of PR(S}] except A(s) = ; we further observe that

MRP can be expressed as the product:

-11

MR= !n I (9)
L.sn-1

for some known real .(g-l)xn matrix 9,. which can be obtained from

either T(s) or (as shown) its factorization, R(s)PR (s). The

polynomials which comprise, MRP or, equivalently, the matrix

lefined by (9) play a role.in l".near system theory which has yet to

! be fully investigated.+  To indicate some proqress which has been

4

+A portion of the proposed work will address this more general question.
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made regarding lof, however, we first define w as the ra%k of 0;

i.e.'

W pn], (10)

and y as the minimum of w and mp, where mp represents the number

of independent gain elements, hij, of H: i.e.

y = min(w,mp). (1l)

In terms of these definitions, the following result can be formally

established ([17]).

Theorem 1: No more than y zeros of AH(S) can be arbitrarily

assigned via H.

It should be noted that y represents a new and illuminating

upper bound on the (maximum) number of poles which can be arbitrarily

assigned via lof, one which exceeds m + p - 1 (see [13] and [14]

in particular) in a large number of cases., This result, of course,

does not represent an end in itself but rather a basis for further

investigations. In particular, the question ot whether or not it
is possible to "usually" assign y zeros of AH(s) a;bitrarily is

not resolved by Theorem 1. Further investigations have revealed that

in certain cases it is possible while in other cases it is not. To

illustrate, if T(s) s 2+1 2 R(s)P 1l (s),

Ls r S] s2 I2
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0 1 0

then Al 0 A0 1 0 , a rank 4(= w) matrix. In this example,

'L0 0 0 1I 10 1 2J

mp 4 as well, so that y = 4. Although y = 4, it can be shown

that-it is impossible to come "arbitrarily close" to certain sets of

closed loop poles; i.e., if AH(S) = a + a1 s + go* + a s3 + s4 then

t(a+2X < 8(a0+a3-0 ) would necessitate the employment

of certain complex gain elements h The details associated with

this observation will. soon appear in [!7J. On the other hand,

Example 8.2.6 in [!] represents another fourth order, two input, two

output systems for which y = 4 and complete and arbitrary pole

placement via lof is ."almost always" possible.

It thus follows, in view of the above, that while the condition

y = n is necessary, it is not sufficient to insure complete and

arbitrary pole placement for "almost all" sets of closed loop poles.

Nevertheless, the approach taken to define Q and y is a novel one

which has offered, and should continue to provide, significant new

insight regarding lof compensation. It is proposed, therefore, that

additional investigations be conducted with the eventual goal of

obtaining si fficient conditions for "almost always" arbitrarily

assigning all n poles of a lof closed loop system when y = n.

It is felt that certain structural properties of the matrix Q will

play an important role in eventually resolving this, as well as other

related questions.
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With respect to related questions, it has recently been

established that when y < n, constraint conditions on the co-

efficients of A (s) can be obtained via (8) independent of the

hij. Investigations are .proposed, utilizing these conditions, which

will resolve questions related to lof stabilization in such cases as

well as those cases when y - n, but complete and arbitrary pole

placement is not possible (as in the initial ixample).

Investigations are also underway and proposed regarding the

employment of dynamic compensation in combination with lof when

y < n but more design flexibility is desired. In particular, it

now appears that the observability index associated with the single
MRp

input/multiple output system with transfer matrix , will
As)

represent a measure of the minimum order of a dynamic compensator

required for complete and arbitrary pole placement, although further

investigations are required to formalize this observation. To

summarize, the eventual goal of all of theand

proposed in this section is to develop practical low order lof

compensators for the control of multivariable systems..

2. Adaptive Control

The formulation of the second method for parameter identifi-

cation described by Pearson in lc. above has also been shown in Section

4 of [10] to apply to a particular class of parameter adaptive control

problems. This class pertains to those feedback control systems in

which the unknown plant parameters, w, can be dichotomized into two
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sub-vectors, wa and wb , i.e., w - (WaWb), in which the

vector w has a relatively more important affect on the stability

*of the feedback system than wb . For example, wb may contain

the parameters for external additive disturbances, modeled a3 un-

controllable modes, such as wind gust effects, which do not influence

the absolute stability of the feedback system, but would lead to

erroneous parameter adaptation if ignored in the formulation. The

controller portion of the basic feedback control system is assumed

to have been structured with sufficient flexibility so that there

exists an invertible function r between wa and the controller

parameters a, i.e., a= r(wa), corresponding to which the

desired tability and steady state error criteria are upheld uni-

formly in wb when a = a = r(Wa). With these basic assumptions,

this class of parameter adaptive control problems is shown in [101

to be amenable to the same generic formulation as the second method

for parameter identification discussed above. Also, sufficient

conditions for the uniqueness of solutions to the nonlinear algebraic

equations have been obtained in (10].

3. Control of Bilinear Systems

Various results relating to the control of bilinear systems

have emerged in a forthcoming Ph.D. dissertation of Wei (19] under

the direction of Pearson. First, it is shown how various nonlinear

systems with trigonometric nonlinearities can be re-defined as a

bilinear system through a suitable transformation of state variables.

Specific examples of suca systems are given in relation to a para-

-A
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chute gliding system and a pursuit-evasion missile control system.

Next, the existence and uniqueness of solutions to a class of minimum
!i energy control problems for commutative billnear systems is shown

resulting from t-e discovery that the optimal control is a constant

vector ietermined by thn boundary conditions. Applications of this

result are obtained for the pursuit-evasion missile control problem

which falls into the aforementioned class under the assumption that

j the line speed of the pursuer missile can be controlled in addition

to the turn rate. A suboptimal control law is obtained for this

class of problems when higher order (actuator' dynamics are included

in the model. Simulation studies for the 2 dimensional pursuit-

evasion missile control problem have been carried out which include

first order actuator dynamics and a least squares estimation al-

gorithm for the target speed and relative heading, in addition to

the control algorithm derived for the minimum energy interception

problem.

4. Stochastic Control

a. Computational Methods for Control Problems with

Diffusion Models

Kushner completed a monograph [20] on the subject, and the

preface, describing it in more detail, follows. The monograph deals

with a family of interesting and useful techniques for approximating

(for computational and other purposes) a large class of optimal

stochastic control problems, by simpler optimal stochastic control

problems. It also develops a theory and technique for approximating

many types of functionals of diffusions that are of interest all

through control and communication theory.

kt
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.This book deals with a number of problems concerning approxi-

mations, convergence and numerical methods for stochastic control
problems, and also for degenerate elliptic and parabolic equations.

The techniques that are developed seem to have a broader

applicability in stochastic control theory.. In order to illustrate

this, in Chapter 11 we give a rather natural approach to the frmula-

tion and proof of the separation theorem of stochastic control

theory, which is more general than. the current approaches in

peverAl respects, .

Th ideas of the book concern a number of interesting

techniques for approximating (cost or performance) functionals of

diffusions and optimally controlled diffusions, and for approximat-

ing the actual diffusion process, defined by stochastic differential

equations of the It8 type, both controlled and uncontrolled. Since

many of the functionals that we seek to compute or approximate are

actually weak solutions of the partial differential equations

(i.e., the weak solution can be represented, as a functional of an

associated diffusion), the techniques for approximating the weak

solutions are closely related to the techniques for approximating

the diffusions and their functionals. Also, the form of the partial

differential equation which is (at least formally) satisfied by a

functional of interest, actually suggests numerical methods for the

probabilistic or control problem,4

We develop numerical methods for optimal stochastic control

theory, and prove the required convergence theorems. Neither for



11-16

this, nor for any of the other problems, do we require that the

cost or optimal cost functions be smooth, or satisfy any particular

partial differential equation in any particular Sense. Nor do we

require, a-priori, that the optimal control exist. Existence is a

by product of our method. The numerical techniques are intuitively

reasonable, admit of many variations and extensions, and seem to

yield good numerical results.

The main mathematical techniques are those related to the

use of results in the theory of weak convergence of a sequence Cf

probability measures. The technique seems to provide a point of

view which not only suggests numerical methods, but also unites

diverse problems in approximation theory and in stochastic control

theory. The ideas of weak convergence theory are being used more

and more frequently in various areas of applications. But this

book, and previous papers by the author and some of his students,

seem to be tile only currently available works dealing with

applications to stochastic control theory or to numerical analysis.

The proofs are purely probabilistic. Even when dealing with

numerical methods for partial differential equations, we make no

explicit smoothness assumptions, and use only probabilistic methods

and assumptions.

Chapter I discusses some of the necessary probabilistic

background, including such topics as the Wiener process, Markov

processes, martingales, stochastic. integrais, It8's Lemma and

stochastic differential equations. It is assumed, however, that

the reader has some familiarity with the measure theoretic
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foundations of probability. In Chapter 2, we describe the basic

ideas and results in weak convergence theory, at least in so far

as they are needed in the rest of the book.,

The computational methods of the book are all equivalent

to methods for computing functionals of finite Markov chains, or

for computing optimal control policies for control problems with

Markov chain models. Many efficient computational techniques are

available for these problems. In particular, the functionals for

the uncontrolled Markov chains are all solutions to finite linear

algebraic equations. The Markov chain can arise roughly as

follows. We start with the partial differential equation which,

at least, formally, is satisfied by a functional of the diffusion,

and apply a particular finite difference approximation to it. If

the approximation is chosen carefully (but in a rather natural

way), then the finite difference equation is actually the equation

that is satisfied by a functional of a particular Markov chain,

and we can immediately get the transition probabilities for the

chain from the coefficients in the finite difference equation.

The local properties of this chain are very close to the local

propegties of the diffusion, in the sense that there is a natural

time scaling with which we interpolate the chain into a continuous

parameter process, and the local properties of the interpolation

and diffusion are close in certain important respects. Also, the

functional of the Markov chain, which is the solution to the

approximatinc equation, is similar in form to a "Riemann sum"

approximation to the original functional of the diffusion.

At this point, the theory of weak convergence comes in, and
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we show that the functional of the chain does indeed converge to

the desired functional of the diffusion, as the difference

intervals go to zero. Similarly, the approximation to the weak

sense solation to the partial differential equation converges to

the weak sense solution. The interpolation of the chain also

converges (in a suitable sense) to a solution to the stochastic

differential equation. Of course, the finite difference algorithm

is classical. But, neither the convergence roofs nor the

conditions for convergence are classical. Also, the method can

'1 handle a much broader class of functionals than those that may

possibly solve some partial differential equation.

It is not necessary that we use finite difference methods;

their use does, however, yield an automatic way of generating a

family of approximating chains, whether or not the functional is

1 smooth. However, many types of approximations are usable,

provided only that they yield the correct limiting properties

Indeed, this versatility is one of the strong points of the

I approach.

1Approximating with Markov chains (whether or not we use

classical finite difference techniques) allows us to use our

physical intuition - to guide us in the choice of a chain, or in

the selection of a computational procedure for solving, the

equation for the functional of the chain. Our sense of the

"dynamics" of the process plays a useful role and can assist

us in the selection of procedures which converge faster.

In the case of the optimal control problem, we start by



11-19

approximating the non-linear (Bellman) part.Lal differential

equation, which is formlly satisfied by the minimal cost function.

With a suitable choice of the approximation, the discrete equations

are just the dynamic programming equations for the minimal cost

function for the optimal control of a certain Markov chain.

Again, there are many types of useful approximating chains. This

non-linear partial differential equation, or optimal control,

case is much more difficult than the uncontrolled or linear partial

differential equation case. However, the ideas of weak convergence

theory, again, play a very useful role. Under broad conditions,

we can show that the sequence of optimal costs for the controlled

chain converge to the optimal cost for the controlled diffusion.

Indeed, it can even be shown that the (suitably interpolated)

chians converge, in a particular sense, to an optimally controlled

diffusion.

In Chapter 3, we give the required background concerning.

the equations satisfied by various functionals of Markov chains,

both controlled and uncontrolled. Our method is able to treat

optimal control problems with various types of state space

constraints. However, this often requires a linear programming

(rather than a dynamic programming) formulation, and this is also

jdiscussed in Chapter 3.
Chapter 4 discusses the relations between diffusion processes

and elliptic and parabolic partial differential equations, both

2 ' non-degenerate and degenerate and linear and nor i.inear. Proofs are

not given. The representation of the solutions of the linear
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equations in terms og path functionals of the diffusion is discussed,

as well as the relation between certain non-linear equations and

optimal stochastic control problems. Chapter 5 is an introduction

to the techniques and results of the sequel. In order to illustrate

some of the simpler ideas, the techniques of weak convergence theory

are apoiied to a simple two point boundary value problem for a

second order differential equation.

In Chapter 6, we begin the systematic exploitation and

development of the ideas. The motivation for the types of approxi-

mations is given, and the approximation of a variety of functionals

of uncontrolled diffusion and linear elliptic equations is treated.

We also show how to approximate an invariant measure of the

diffusion, by an invariant measure of an approximating chain, and

discuss the use of the approximations for Monte-Carlo, and give

some numerical data. The approximations that are explicitly

discussed are derived by starting with finite difference techniques;

all of them yield Markov chain approximations to the diffusion.

However, it should be clear, from the development, that many other

methods of approximation can be handled by the same basic techniques.

The general approach taken here should motivate and suggest other

methods with perhaps preferable properties for specific problems.

'Chapter 7 deals with the parabolic equation, and with the

probabilistic approach to approximation and convergence for explicit

and implicit (and combined) methods. Furthermore, approximations

to a (currently much studied) class of non-linear filtering problems

are discussed. Some numerical data, concerning approximations to
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*an invariant measure, is given.

In Chapter 8, we begin the study of non-linear partial

differential equations and approximations to optimal control

problems, in p~articular to the optimal stopping and impulsive

control problems. The discretizations of the optimization problems

for the diffusion yield similar optimization problems on the

approximating Markov chains. We are able to prove that the

approximations to the optimal processes and cost functions

actually converge to the. optimal processes and cost functions,

resp. The study of non-linear partial differential equations

and optimal control problems continues in Chapter 9, where a

variety of approximations and control problems are discussed.

In order to show that the limiting cost functionals are truly

minimal (over some specified class of control policies), and that

the limiting processes have the probabilisitc properties of the

optimally controlled diffusion, a number of techniques are

developed for approximating arbitrary controls, and for proving

admissibility or existence. It is expected that many aspects of

the general approach will be quite useful in other areas of

stochastic control theory. Additional numerical data appears in

Chapters 8 and 9. Again, it must be emphasized that much more work

needs to be done - to investigate various types of approximations

- in order to - fully understand which types of approximations are

preferable, and why.

In Chapter 10, we treat two types of extensions of the ideas in

Chapters 6 and 7. First, approximations to stochastic differential

difference equations, and to path functionals of
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such processes, are developed. Then, we discuss the problem of

diffusions which are reflected from a boundary, and the corres-

ponding partial differential equations with mixed Neumann and

Dirichlet boundary conditions.

Hopefully, the book will help open the door wider to an

interesting direction of research in stochastic control theory.

Similar techniques can be applied to the problem where the stochas-

tic differential equation has a 'jump term", and the partial dif-

ferential equations are replaced by partial differential integral

equations.

b. Sequential Monte Carlo Methods for Optimizing Con-

strained Noisy Control Systems

Kushner has continued his investigations [21,22] into

the above subject, which has numerous applications in systems op-

timization. The subject is the Monte Carlo version of nonlinear

programming. The results this year were of two types. First, a

rather extensive series of computer investigations is underway -

concerning the numerical properties of algorithms that were theo-

retically analyzed last year. Algorithms were of several types,

for equality constraints only, Lagrangian methods for inequality
penalty - Lagrangian methods for inequality constraints,

constraints,/and several types of 'pseudo projection' methods. The

purpose of the investigation is to gain a thorough understanding

of the advantages, shortcomings, numerical properties, etc., of the

algorithms - to enable us to improve and develop them. The results,

so far, have been extremely good; it appears that the algorithms
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are both interesting and useful, and we are well on the way to

understanding their numerical properties.

The second type of effort concerned the theoretical proper-

ties of the algorithms themselves. Typically, various restrictive

conditions were put on the coefficient sequences (such as square

summability), and the observation noises were assumed to be un-

correlated. Using some rather powerful ideas in the theory of

weak convergence of measures, Kushner has proved the convergence

theorems under substantially weaker and more practical conditions.

c. Generalized Solutions in Optimal Stochastic Control

In a paper on generalized solutions in optimal stochastic

control (23], Fleming discusses two kinds of such solutions. The

first kind is introduced to deal with lack of a Filippov-type con-

vexity condition, much as in ordinary (deterministic) optimal control

theory. Results about the existence of an optimum are obtained for

stochastic problems in which the data-fields available to the con-

troller do not vary with the control chosen. In particular, these

results apply to open loop problems and to problems with completely

observed system states. For the latter class of problems, it is

noted that the method of dynamic programming frequently gives an

ordinary (non-generalized) feedback s,.ution without assuming any

convexity conditions.

A difficult open question is the question of existence of

optimal controls for stochastic problems with partially observed

system states. A second kind of generalized solution is introduced
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as a step toward dealing with this matter. Following Benes, Davis-

Varaiya, and Bismut, the problem is reformulated as one of finding

a Gersanov density whose integral with respect to Wiener measure

on the space Q of possible system trajectories is optimized. In

case of paL tially observed states, the set A of densities corres-

ponding to ordinary controls is neither weakly closed nor convex,

in the space L2 (a) of square integrable densities. Generalized

4 controls correspond to points of the weak closure B of the convex

hull of A. A partial characterization of points of B is obtained,

in terms of auxi-liary randomizations.

5. Bifurcation Theory

Hale has continued his work on nonlinear oscillations and bi-

furcation theory. Chow, Hale and Mallet-Paret [24, 25] have given

a general theory of bifurcation for families of mappings which

depend on two parameters X,p. The complete bifurcation picture is

obtained for A,p varying independently in a neighborhood of some

point. Applications have been given to the von Karmgn equations

for a rectangular plate and thin shells with lateral loading and

normal loading.

In his thesis directed by Hale, List (26) considers the

above parameters as well as an additional one concerned with the

shape of the plate. Other applications are contained in Hale [27,

281.

Hale and Rodrigues [29] have been discussing the classical

forced Duffing equation with and without damping and have been
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attempting to characterize the behavior of the periodic solutions

as a function of the parameters and allowing the parameters to

vary independently. Surprisingly, no one has given the bifurcation

diagram for this simple equation. The discussion requires an ex-

tension of the methods previously mentioned above.

6. Control of Systems Governed by Ordinary and Functional

Differential Equations

a. Functional Differential Equations: Stability and

Periodic Solutions

4Hale has continued to develop the general theory of func-

- tional differential equations both of retarded and neutral type:.

In the area of stability, he has given a rather complete descrip-

tion of the behavior near a constant solution [30). This theory

gives a description of the center manifold theorem as well as prac-

tical methods of determining stability in critical cases. The

hopf bifurcation theorem for ordinary differential equations can

also be generalized by using these results. In the development of

this theory, a special transformation was devised which permits one

to obtain a vector field on the center manfold. This transformation

has proved to be very useful in the study of combined sets of dif-

ferential-difference and difference equatio, which occur often in

the theory of gas dynamics and transmission lines (see (31]).

For equations of neutral type, some very interesting and

important problems on the stability of difference equations have

arisen. For example, consider the difference equation,
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x(t) = A kx (t-rk),
k=l

where each rk > 0 and each Ak is an n x n matrix. If this

equation is stable for one set of values (rl,...rN), is it also

stable for values close to these? The answer in general is no.

Hale (32] has shown that if stability is preserved, then the

equation must be stable for all values of (rl,...rN). In his

thesis supervised by Hale, Silkowskii [33] has given necessary and

sufficient conditions for this type of stability to hold.

Silkowskii [33] has also given a method easier to apply

than Pontryagin for obtaining the stability of solutions of linear

differential-difference equations with constant coefficients. Tsen,

under the direction of Infante, is continuing to work on these im-

portant stability questions.

Many theoretical results on fixed points of mappings have

arisen because of the discussion of the existence of periodic orbits

of periodic dissipative systems (see, for example, Hale and Lopes

[34], Chow and Hale (35], Hale (36]). These results were applied

by Lopes [37] to equations of neutral type. The results also have

implications on uniformly ultimate boundedness and the basic definitions

of stability (see the forthcoming book of Hale [38]).

b. Optimal Control of Systems with Delays: Approximation

Techniques for Linear, Bilinear, and Weakly Nonlinear Systems

Banks has continued his investigation of approximation

methods for optimal control problems governed by autonomous functional
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differential equations. During the past year, he has completed

a rather extensive st-dy for linear systems of both theoretical

and numerical aspects of a method based on use of "averaging"

approximations formulated in the context of a framework that is

a modification of the one detailed in [39]. The numerical results

(which substantiate theoretical findings that this method is indeed

a good one for a large class of linear system problems) are re-

ported in [40]. In that report a generous supply of examples (in-

cluding some involving systems such as those modeling a harmonic

oscillator with delayed damping or delayed restoring force) were

solved both analytically (using the necessary and sufficient condi-

tions for optimal control of delay systems - developed previously

by Banks among others), and numerically (via the "averaging"

approximation techniques) and the solutions compared.

A modification (which allows the treatment of a larger class

of approximation techniques within t'ie context of the framework) of

the conceptual framework in [39] along with new theoretical results

for the "averaging" approximation methods were developed in [41] for

optimal control problems with (n-vector) system equations

V r0
- ix(t-hi) + f D(s)x(t+s)ds + Bu(t), t e [O,t 1 ] (1)
i=O -r

where 0 = h < hI < ... < h < r. Briefly, this approximation

technique involves solving a sequence of control problems governed

by the vector ordinary differential equations (which are approxima-

tions to (1))
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*N N Nw (t) = A w (t) + col (Bu (t),, .. ,0)

where wN is a vector in Rn(N+l), AN is the n(N+l) square

matrix (taking v = 1 in (1))

A N N N------------------------ d _lA1 d

N N
r r -

rrI - -. - 0

- - -
0- -------. o r r

i]! Here I is the n × n identity matrix and

-1-i
Nr D ( s ) d s ,j = 1 2 . . N

N

In 141) there is also given a thorough discussion of the relation

of our results to a numiber of heuristic (and, in some cases, in-

correct) uses of similar higher-order ODE approxi.mation ideas for

FDE found in the engineering literature during the past 8-10 years.

our analysis has yielded precise convergence results along with

error estimates (see E42]). In addition, Banks has recently succeeded

in extending some of these approximation ideas to treat certain pro-



11-29

blems with nonlinear systems of the form:

x(t) = L(xt) + f(x(t),xtu(t)), t C [O,tl]. (2)

Here L is the same linear operator (on xt, where xt(O) =

x(t+O), -r < e < 0) as given in the right side of (1) above. Ex-

amples of systems which are included in the extended theory for (2)

are bilinear control problems of a somewhat standard type arising

in applications and nonlinear systems of the type currently under

investigation in models for protein synthesis. Details of these

results along with a discussion of these models can be found in [42].

Work on extensions of these ideas to other nonlinear problems is

continuing.

c. Vector Liapunov Functions and Stability Theory of

Ordinary Differential Equations

Following ideas that first appeared in [43] and [44],

LaSalle corrected a result in [43] in formalizing an idea due to

the economist Arrow for-the construction of a Liapunov function

from a number of scalar functions, none of which need be a Liapunov

function. Arrow did not express his idea in these terms. This can

be viewed as a vector Liapunov. LaSalle has further studied the

idea of vector Liapunov functions and used them to investigate and

obtain new results on global asymptotic stability (see [45]). This

more teneral ide. of a vector Liapunov function, which arose quite

naturally in economics, should be useful in deriving certain types

of control laws. This has not yet been explored.
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The deeper knowledge that we now have of the invariance

properties of the limit sets of the solutions of ordinary differen-

tial and difference equations in the nonautonomous case increases

in importance a type of theorem due originally to Yoshizawa and

later modified by LaSalle. The theorem has to do with the set E

associated with a Liapunov function. The application of the newer

invariance results requires a further improvement in Yoshizawa's

result. By extending the concept of a Liapunov function for non-

autonomous systems, LaSalle has given a newer version of Yoshizawa's

theorem. The conditions imposed are weaker than those of Artstein

and also include a recent result given by Onuchic PI: al in [461].

These results of LaSalle and some new sufficient conditions for

asymptotic stability and instability can be found in [47] and [48].
From time to time during the past 5 years LaSalle has thought

a great deal about the problem of the stability of feedback struc-

tures for the implementation of optimal control without much success.

It is clear that in the absence of perturbaticns there can be an

infinity of feedback structures, all of which give the same optimal

performance. Which of these is in some sense the "best" or, at least,

possess some stability under perturbations? This is the practical

problem engineer's solve in building real systems. It should be

possible to develop a general theory and to discover some general

principles. We have in the past proposed studying this problem.

LaSalle has done so but, as was said above, without success. The

few simple examples where the problem can be solved are too trivial

to be helpful in finding a suitable mathematical formulation of the
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general problem. They do, however, show that, even for ordinary

differential equations, the available feedback structures (those

that are physically realizable) immediately take one beyond ordinary

differential equations, and this is the difficulty. One idea here
is to study the problem for discrete systems but this would seem to

require first a further development of the theory of discrete pro-

cesses.

d. Difference Equations

Important mathematical models are derived from the ob-

servation at discrete times of continuous processes. Most of the

data in many real problems of process control is available only at

discrete times. LaSalle has noted that, taking a general point of

view of a continuous process (general enough to include all the

usual mathematical models --ordinary and functional differential

equations, etc.) the observed discrete process is equivalent to a

system of difference equations on the state space, which may or may

not be finite dimensional. The'discrete observation of processes

generated by ordinary differential equations yield what engineers

call "sampled data systems". DifZerence equations, even in the

finite dimensional case, reflect aspects of reality not covered Dy

ordinary differential equations. Not every finite dimensional system

of difference equations can be generated by the discrete observation

of a system of ordinary differential equations. That this is so is

easily seen from the fact that there is in existence and uniqueness

of solutions of difference equations only in the forward direction
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of time -- two different past histories can lead to the same state

but from then on the solution is unique. This is expected when-

ever there are delayed effect& in the dynamics of the system.

Much of whdt we have learned recently about differential

equations and dynamical systems has not been applied to the study

of these simple, but practically important, discrete models. For

this reason LaSalle began last summer a study of discrete processes

and has obtained a number of new results in the theory of difference

equations. For example, LaSalle has done for nonautonomous difference

equations what Artstein (bee the Appendix by Artstein in [49] did

for nonautonomous ordinary differential equations in the study of

limiting equations and invariance properties. This has enabled him

to extend the earlier work of Hurt in [50] in applying the invariance

principle to extend Liapunov's direct method. An exposition of some

of these results can be found in [49] and [51]. LaSalle is writing,

and has partially completed, a book giving a modern treatment of the

theory of difference equations (discrete processes) with emphasis on

their stability.
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